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Abstract

Operating a large, space power system requires clas-
sifying the system's status and analyzing its security.

Conventional algorithms are used by terrestrial elec-
tric utilities to provide such information to their dis-

patchers, but their application aboard Space Station

Freedom will consume too much processing time. We

present a new approach for monitoring and analysis us-
ing adaptive pattern recognition techniques. This ap-

proach yields an on-line security monitoring and anal-

ysis algorithm that is accurate and fast; and thus, it

can free the Space Station Freedom's power control
computers for other tasks.

1 Operational Oversight

The electric power system aboard Space Station Free-

dom is part of an infrastructure for space experiments

research. Consequently, its large generation capac-
ity (75kW), primary and secondary distributions net-

works, and changeable loads make this system behave

like terrestrial power systems. Operating these terres-
trial power utilities is based upon command and con-

trol strategies for each of four operating states: nor-

mal, preventive, emergency, and restorative. Space

Station Freedom's power system will also incorporate

such strategies. Oversight decisions must be made to

choose those strategies that will keep the power sys-

tem operating within tolerance and as productive as

possible under all circumstances [1]. The classification
of electric power system operation as a set of behav-

ioral states (Figure 1) provides a heuristic framework

for guiding such decisions [2], [3], and [4]:

• Normal State. When the power system is in the

normal state, all operating constraints are satis-

fied. The basic task is to dispatch as much of the
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Figure 1: System Operating States

generated power as possible without jeopardizing

power system or Space Station integrity.

Preventive State. When the power system is

in the preventive state, an impending contingency

has been detected and the objective is to organize

a return to normal system operation.

Emergency State. If failures occur that over-

load the system such that voltage cannot be main-
tained at safe minimums, the system is in the

emergency state. The objective for this condi-

tion is to stop degradation while satisfying as

much demand as possible [3, 4]. Aboard Space
Station Freedom, this objective is satisfied auto-

matically by the overload protection equipment.
Once the automatic reflexive actions have re-

moved the overloads and have stabilized the op-

eration, restoring lost loads and reconnecting the



systemcanbegin[2].

• Restorative State. Whenanoperatinglimit
hasbeenviolatedandafterthe automaticpro-
tectionequipmenthasstabilizedthesystem,a
processbeginsthat returnssystemcapacityas
muchaspracticable.Thisis therestorativestate
of operation.Theobjectiveis to reconfigurethe
powersystemto supplythemostimportantof
the loadswithoutoverloadingtheequipmenton
line. Meanwhile,plansarepreparedto repairor
replacefailedequipmentandto returnthesystem
to full capability.

2 Security and Automation

2.1 Security Monitoring

Determining whether or not the system is in the nor-

mal state is called security monitoring. The task con-
sists of acquiring data from the system: line currents,

node voltages, phase angles, and power injections; cal-

culating the operating margins for all critical elements

in the system; and judging whether or not these mar-
gins are within tolerances. If so, the system is classified

normal. If not, the systems is in emergency [1].

2.2 Security Analysis

It is during the normal state that security is analyzed.
System security analysis is a risk assessment. It exam-

ines the liabilities of continued operation by identify-

ing contingencies and estimating their consequences.

The contingencies are disturbances that could lead to
overloads, voltage degradation, source shutdown, or

load shedding. If the risk of continued operation is

judged acceptable, the system is classified secure and

system operation proceeds according to the current

plan. If there are risky contingencies, the system is

judged insecure and preventive control strategies are
implemented (preventive state).

Three distinct activities are required to analyze sys-
tem security:

1. Generate contingencies: Worrisome failures

that are present under all operating conditions as
well as operating-state dependent failures such as

transmission outages are compiled and submitted

for analysis.

2. Analyze contingencies: The system's operat-

ing margins are calculated for each of the failures

in the preceding activity.

3. Judge security: A system is secure if there

are no contingencies that result in an emergency

state. If the operating margins calculated in ac-

tivity 2 are insufficient, the system is judged in-
secure.

2.3 Conventional Automation

To date, there has been little success in automatically

generating the contingency list. The task is performed

by enumerating credible failures taken as single events

followed by an enumeration of the next set of credible

failures [1]. For particularly risky scenarios, the single
event failures are expanded to include coincident fail-

ures followed by the next set of credible failures. In

the case of Space Station Freedom's power system, a

two-failure-tolerant design generates a very large list

of contingencies.

Given a list of failures, automatic selection algo-
rithms are used to rank the entries in decreasing order

of severity. The gist is to evaluate operating margins

for the cases in the ranked list taking each case one

by one until a case is found not to produce abnormal

operating conditions. The rest of the cases in the list
will be less severe and need not be analyzed [5, 6, 7]

[8, 9].

The workhorse algorithm for security monitoring

and security analysis is the fast, decoupled load-flow

[10]. This algorithm uses network topology and load-

ing conditions to calculate the all the remaining volt-
age, current, and phase parameters in the power sys-

tem. In the case of security monitoring, the data is

a set of measurements from the system's transducers.
For security analysis, it is those same measurements

with appropriate modifications (either to the network

topology or to some of the measurements themselves)
that are specified as input to the algorithm which then

estimates the contingency's outcome.

The monitoring and security analysis for Space Sta-

tion Freedom's power system is an involved task. We

are concerned that the computational work load im-

posed by security monitoring and analysis will pre-
clude its incorporation aboard Freedom. Using satel-

lite telemetry to support ground-based monitoring will

only introduce unacceptable delays and monopolize

station-to-ground communications. Operational over-

sight requires the rich information from timely security
monitoring and analysis. Without it the power system

will be less productive--certainly less secure.

We wish to pursue investigations of new technolo-

gies that will eventually automate all of the aspects
of security monitoring and analysis and improve the

performance of existing approaches. Our first step is
to apply artificial neural networks to solve the secu-
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Figure 2: Pattern Clustering

rity monitoring task. In so doing, we will also provide
a tool for evaluating the contingencies in the security

analysis task.

3 A Neural Network Approach

3.1 Monitor and Analyzer

The fast, decoupled load-flow needs to be faster. Par-

ticularly when it has to evaluate a large number of con-

tingencies one at time. Further, it needs to consume

less computer resource while doing so. Because the

load-flow algorithm uses iteration to converge upon a
solution, its solution time can change with the task at

hand. All that the security monitoring and analysis

tasks require is for load-flow to classify an input data
pattern to be within tolerances. An artificial neural-

network, trained to recognize the same input pattern

and recall the corresponding tolerances would signif-

icantly reduce computational burdens. Rather than

rely upon a search strategy to iterate and converge to
a solution as does load-flow, the trained network calcu-

lates sets of sums, differences, and products only once.

The operation of such a neural-network algorithm has

three data processing stages:

3.1.1 Clustering Similar Patterns

The first processing stage of the algorithm is to de-

termine the similarity between the input data pattern

and one of four reference (prototype) clusters (Figure

2). The input pattern is a collection of node volt-
ages, phase angles, currents, and admittances. The

input features are scaled in per-unit-values; that is,
the actual value for the variable divided by a nominal

operating value. The exemplar for the prototype clus-

ter has the same features as the input pattern. The

following algorithm is used to assign the input pat-

tern to the closest cluster using Euclidean distance as
a metric:

Let:

I = total number of features in the input

pattern.

J = total number of clusters.

xl = i th feature of the input pattern.

bji = i th feature of the jth cluster's proto-

type.

/,--, z bEDj = V?__,i=I ( ji - zi) 2 --the Euclidean
distance from the cluster's prototype to the

input pattern.

ComputeEDj Vj=I,2,...,J

Find min(EDj) and assign the input pattern
to this cluster.

For the second cluster, there are four subclusters.

(See Section 3.2.2.) Once cluster 2 membership is es-
tablished, the input pattern is assigned to the closest
subcluster.
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3.1.2 Scale and Augment the Input Pattern

The second processing stage scales and augments the

input pattern. These operations, shown in Figure 3,

prepare the pattern for use with a "flat" (no hidden

layers) network. Each feature is scaled according to

z7 =¢, xi scaled

where the minimum and maximum values are from

the unsupervised learning phase of development (Sec-
tion 3.2.2). Next, the pattern is augmented by

adding features sin rxi, cos rxi, sin 2_rzl, cos 27rzi for

i = 1,2,...,I. This results in a pattern with 5I fea-
tures.

3.1.3 Recall Margins from "Flat" Network

In the third processing stage, the augmented and
scaled pattern is directed to a "flat" network that has

been trained to recall output patterns for all inputs

belonging to a particular cluster. (See Figure 3.) The
output features for this network are the operating mar-

gins for the power system's critical parameters and a

classification of normal or emergency.

Let:

K --- total number of output features.

wki -- i_h feature's contribution to output
feature k.

o2 = k _ output feature.

02 = threshold for sigmoidal activation func-

tion for output feature k.

St = slope parameter for sigmoidal activa-
tion function for output feature k.

Sl
netk = _i=1 wkiz_ + at

Then calculate V k = 1,2,...,K the state

classification and operating margins using:

1
02--

1 + e -Sknetk

3.2 Design and Development

The development approach is shown in Figure 4.

Training cases are synthesized and analyzed with fast,
decoupled load-flow to produce sets of input patterns

and their corresponding operating margins. These in-
put patterns are grouped into clusters and assigned

to a separate network. The first stage in this process
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groups similar patterns together, augments their fea-
tures, and directs them to a "flat" network trained for
this class of input pattern. In the second stage, the

"flat" network recalls the appropriate operating mar-

gins for a given input pattern. To develop the clus-
ters, we used unsupervised learning [11]. To augment

the input features we applied nonlinear transformation

(functional-expansion) which improves network learn-

ing. To train the "flat" network for associative stor-
age and recall we employed supervised learning. This

combination of feature augmentation and supervised

learning is an application of Pao's functional-link net

[13, 14, 15, 16].

3.2.1 Input and Output Patterns

To synthesize the training patterns for the artificial

neural network, we used Stott's fast, decoupled load-

flow [10] to produce over 2000 sets of data for the

power system shown in Figure 5. Load and generation
levels were varied between 0 and 120% of the normal

rating with generator buss voltages maintained within
10% of normal. Included in the sets were cases with

one of the lines removed from the ring (between 5-12-6,

7-13-8, and 9-11-10). The input pattern features cho-

sen for training our network were voltages and phase

angles for nodes 1 through 10 and 14 through 16, volt-
age for slack-buss 17, currents for both inverters, the

current for each of the four loads, and 6 of the di-

agonal terms in the admittance matrix (specifies the

topology)--a total of 39 input features. The output

pattern features were over- and under-voltage margins
for each of the four loads, over-current margins for the

inverters and the seventeen lines, and a classification

of operating state as either normal or ernergency--a

total of 28 output features.
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Figure 5: Power System Example

3.2.2 Unsupervised Learning

Training begins with the unsupervised clustering of

the input data. The following algorithm was used:

Let:

I = total number of features in the input

pattern.

P = total number of input patterns.

Xp = Zpl, xp_,..., xpz --the input pattern.

• pi = i*h feature of the pth input pattern.

Bj = bjl, bj2,... ,bit --the duster's proto-
type.

bii = i th feature of the jth cluster's proto-

type.

--the Euclidean

distance from the cluster's prototype to the

input pattern p.

ED An arbitrarily chosen "radius" of simi-

larity for membership in a cluster.

Nj = the number of patterns in jth cluster.

Initialize: J = 1, B1 = X1, N1 = 1



ForthepatternXp p # 1:

1. Compute:

EDjp V j and for pattern p.

2. V j, find min{EDjp} < ED and assign

pattern 0 to this cluster.

Modify the duster's prototype by:

Nj(n) 1

bii (n + 1) - 1 7 _-j (n) "bj/(n) + 1 +

Increment Nj (n + 1) -- 1 + Nj (n), and repeat
1 and 2 with a new input pattern.

Otherwise, spawn a new cluster

B j+l =Xp Nj+I=I

and repeat 1 and 2 with a new input pattern.

Because the cluster prototypes are adjusted when

input patterns are.assigned in step 2, some of the pat-
terns initially within the cluster may fall outside of

the cluster when the algorithm is completed. The al-

gorithm is run iteratively to reassign these orphans
using the current number of clusters, J, and their pro-

totype values, Bj, as initial conditions.
To complete the unsupervised learning phase, all of

a cluster's patterns are scanned to find the maximum
and minimum values for each feature. The pattern fea-

tures are then "zeroed and spanned" to produce pat-
terns whose features all lie between -1 and 1. The max-
imum and minimum values of each feature are stored

for use in "zeroing and spanning" input patterns dur-
ing the security monitoring and analysis phase (Sec-

tion 3.1.2).

For our problem, we swept through a range of ED's
from 1 to 4. The number of clusters that formed

ranged from 30 to 1 varying approximately as
(ED) "

We began our analysis by choosing the four cluster

case. During the supervised learning phase (Section

3.2.3), the patterns in cluster 2 could not satisfacto-

rily recall the corresponding operating margins with
a "flat" network; so we subdivided cluster 2 into four
clusters and trained an individual network for each

[12].

3.2.3 Supervised Learning

Each duster's scaled pattern is enhanced using four
sets of orthonormal functions:

sin 7rz*pi, cos rx_i , sin 2a-x_i , andcos 27rzri

with pattern p, feature i, and * =_ scaled. No new

information is introduced but the pattern size is in-

creased to 195 features. The objective is to add enough

dimensionality so that a "flat" network can be used for

associative recall of the load-flow calculations [15].

The "flat" network is trained one output at a time

using the generalized delta rule [17] and the following
algorithm:

Let:

tpt = k *h output feature's desired (target)
value for the p_h input pattern.

wki, netpt, 06, St, and opt as in section 3.1.3

Epk = ½(tpk - opt) 2 = k _h output's error for
the pth input pattern.

6pt = - _0..,., = (tpt - opt)opt(1 - opt)

For the enhanced, scaled pattern X_'* and
its desired output tpk, and for initial wtl, St,
and Ok:

1. Calculate:

opt(rn) - 1 and Ept V p =
1+e -st (m)., *pt_(m)

1,...,P; and then,

P

Ek = E Epk

p=l

2. If EL > some maximum E, then:

Calculate the optimal learning rate: r/_,

w_(m + I) v_k_(m)+ v_ e .= _p=l 6pt%i V i =
1,...,I

P
0k(Ell -Jl- 1) = 0k(m) -_ 0_ Ep+I _pt

195

netpk (m + 1) = E wti (m + 1)x;i + 06 (m + 1)
i=1

Vp= 1,...,P

Calculate the optimal slope rate: p_
P

&(m + 1) = St(m) +  pknetpk(m)
Repeat 1 and 2.

The optimal learning rate is calculated with the fol-

lowing algorithm:

1. Pick an initiM value for r/k = r_k,_ ; r = 0.

Given wki(m), Ek,r-1 : Ek, and 0k(m):

2. Calculate:

P

p---1

P

Ot(fTl, r) = Ok(m ) Jr- 77k,r _ t_Pk

p=l



195

.etp Cm,r)= + O (m,r)
i=1

1

opt(m, r)= 1+ e-sk(ml"e',k(m,r)Vp

P 1

= -
p=l

3. For:

1

Ek,r - Ek,r-1 > 0 r/k,r+a = {r/k,r

Ek,, - Ek:-x _< 0 _/k,_+l = 2r/k:(n)

4. Repeat 2 and 3 using increasing r/k,r

to locate the first point where Ek decreases

and then the first point where Ek increases:

r/_:(E_ first decreasing) and _/k,_(Ek first in-

creasing).

5. Fit a parabola through qk,0, rlk,r(Ek

first decreasing), and r/k:(Ek first increasing)
such that:

Ek _ aT/_ + br/k + c

6. The optimum learning rate is at the sta-
tionary point r/_ - -b-- _'a"

The optimal slope rate p_ is calculated with the
same algorithm as the optimal learning rate but with

step 2 modified so that

P

p=l

and pk,r are computed rather than netpk(m,r) and

T}k,r -

To learn a single output fe._ture's response, the net-

works required all of a duster's training patterns pre-

sented approximately 200 times. Our computation
time was roughly 3 minutes per output feature using
a Sun-IV workstation.

3.2.4 Performance

We submitted test cases to both the fast, decoupled
load-flow and the trained network. The test cases had

not been used for training. In general, the network

would recall the operating margins within better than
_+5% of the load-flow calculated value. The process-

ing times (using a PC/AT 386/20MHz) were 500 psec.
for the network and 5 sec. for the load-flow algorithm.

For our power system example, the artificial neural
network could monitor system security and evaluate

over 9,900contingencies before the load-flow algorithm

could complete one case. The penalties for the network

are accuracy and data storage. (Our simple model re-

quires about 40,000 words to store the wki's.) The ac-
curacy can be improved through more clustering and

reducing the scope of the problem solved by the net-

work. The former increases storage requirements, the

latter may increase solution time.

4 Coda

Rules or Nets?

Both rule-based systems and artificial neural networks

are used for pattern recognition. Of the two, the neu-

ral network is ideally suited to the security monitoring

task. For this task, the input information does not

contain explicit measurements of all of the parame-

ters used for computing operating margins (every line

current for example), and so, the relation of input fea-
tures to output features is quite difficult to express

as a system of rules in a production system. Con-
sider the operating state classification task: without

additional information, any input can be either in the

normal or in the emergency state. This is becal.,se the

information contained in a single feature is not suffi-
cient to resolve between normal and emergency unless

it is evaluated concurrently with the other input fea-

tures. Many rules would be required to quantize the
information into "crisp" intervals that a production

system could recognize accurately. Such a rule-based
detector would be difficult to maintain. We contend
that an artificial neural network is the better solution

for this task [18].

Prospective

This small example demonstrates the computational

advantage of associative recall using artificial neural

networks. The method will allow quick and efficient
on-line security monitoring, and thus, provide infor-

mation for operational oversight without compromis-

ing other tasks competing for processing time. The

processors for Space Station Freedom will need am-

ple memories to store the information required by a
competent neural network application. Present space-

qualified computers do not have the storage. Free-

dom's computers will have to be specified with ade-

quate growing room for this new technology.
So far, we have only addressed the security monitor-

ing function and provided a rapid means of evaluating

contingencies. There is much work remaining. Com-

piling the failure list is amenable to automation ei-

ther through rule-based pattern classifiers or through



a trained network--possibly both. Ranking contin-

gencies using conventional procedures is computation-

ally intensive (Section 2.3) and can be facilitated by
rule-based expert systems [19]. Integrating contin-

gency generation, ranking, and analysis into an ef-
fective, automated process for on-line command and

control applications has no precedent. We believe that

automating these activities produces a comprehensive

approach to operational oversight----one that will re-

duce our dependency on human involvement and sig-
nificantly increase power system security.
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